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GPS stations within the stippled area in Fig­
ure 1 (that is, SLR velocities are not included 
in the pole determination). This rotation re­
sults in velocities at the NAF of about 25 
mm/yr. 

As indicated by the residual velocities in 
Figure 3, deviations from uniform plate mo­
tion appear to increase toward the Hellenic 
arc. The overall pattern suggests crustal ex­
tension in the southern Aegean Sea and 
western Turkey. Crustal extension in this re­
gion is generally consistent with 
independent GPS results from the southern 
Aegean [KastensetaL, 1993] as well as with 
earthquake focal mechanisms and geologic 
structure [McKenzie, 1970; Sengor et at., 
1985]. However, the observed stretching rate 
(10 mm/yr) is considerably less than the over­
all Anatolian plate motion rate and less than 
one third of the rates derived from analysis of 
earthquake data [McKenzie, 1970]. The 
small magnitude of the residual velocities in­
dicates that this region behaves 
approximately as a coherent plate (Ana­
tolian plate). The fit between the small circle 
about this GPS pole and the NAF (Figure 3) 
provides independent support for this pole lo­
cation and indicates that the NAF represents 
the principal boundary between the Ana­
tolian and Eurasian plates. Additional GPS 
measurements are planned over the next few 
years, and the much improved space and 
ground components of the GPS promise to 

A Singular-Spectrum Analysis (SSA) 
Toolkit is now available for use on comput­
ers with X-windows capabilities. The Toolkit 
provides free, compact, and easy access to 
SSA and several powerful spectral analysis 
techniques not readily available in common 
statistical packages. The current Toolkit, Ver­
sion 1.1, provides tools for 
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substantially improve our understanding of 
kinematic and dynamic processes affecting 
this area of active continental deformation. 
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Fig. 1. Toolkit menu and SOI time-series 
plot, with months from January 1933 on the ab­
scissa and dimensionless SOI values on the or­
dinate. Original color image appears at back 
of this volume. 

Software Expedites 
Singular-Spectrum Analysis of 
Noisy Time Series 
PAGE 12,14,21 

Michael D. Dettinger, Michael Ghil, Christopher M. Strong, William 
Weibel, and Pascal Yiou 

This page may be freely copied. 



Eos, Vol. 76, No. 2, January 10, 1995 

Fig. 2. MEM menu and MEM power spec­
trum, with frequency in cycles/month on the 
abscissa and power in months x (dimension-
less SOI)2 on the ordinate. Original color im­
age appears at back of this volume. 

fornia, Los Angeles, with contributions from 
the U.S. Geological Survey and Laboratoire 
de Modelization du Climat et de l'Environne-
ment. 

Toolkit Components 

Singular-Spectrum Analysis SSA is de­
signed to extract as much information as 
possible from short, noisy time series without 
prior knowledge of the dynamics underlying 
the series [Broomhead and King, 1986; Vau-
tardandGhil, 1989; Vautardetai, 1992].The 
method is a form of principal-component 
(PC) analysis applied to lag-correlation struc­
tures of time series. SSA is particularly 
successful in isolating periodic components 
and trends. In the Toolkit, it decomposes 
time series by data-adaptive filters into oscil­
latory, trending, and noise components; 
generates statistical significance information 
on these components; and provides recon­
structed components (RCs). 

SSA performance is controlled within the 
Toolkit through the choice of maximum lag 
(SSA window size), graphical tests of signifi­
cance level for leading SSA components and 
a choice of methods for estimating the lag-
correlation structure. SSA window size 
determines its ability to separate oscillations 
having similar frequencies, with a typical 
resolution of about [window size] . 

The univariate form of SSA provided by 
the current Version 1.1 of the Toolkit has 
seen a number of practical applications. Re­
searchers used it to retrieve periodic 
oscillations related to El Nino from atmos­
pheric and oceanographic time series 
[RasmussonetaL, 1990]. Ghil and Vautard 
[1991] retrieved interdecadal temperature 
variability and global warming trends, and 
Penlandetal. [1991] prefiltered angular mo-

Fig. 3. SSA menu and log-eigenvalue spec­
trum for the SOI time series, with SSA compo­
nent number on the abscissa and percentages 
of total variance on the ordinate. The compo­
nents are ordered by variance captured. Origi­
nal color image appears at back of this volume. 

mentum time series prior to spectral estima­
tion. 

Traditional Fourier-Transform Analy­
sis SSA readily extracts periodic 
components from nonstationary and noisy 
time series. To determine the corresponding 
frequencies, the Toolkit provides several 
tools for power-spectrum estimation. 

Power spectra can be estimated using the 
windowed-correlogram method of Marple 
[1987]. Correlograms are Fourier transforms 
of autocorrelations that approximate the 
power spectrum of the series. They are easily 
estimated, and the Toolkit provides menu op­
tions for choices of windowing functions 
("window carpentry" to reduce power leak­
age within the spectrum) and window widths 
("window opening and closing" to control 
trade-offs between the variance of spectral es­
timates and the resolution). 

Multi-Taper Estimates The Toolkit also 
provides spectral estimation by the MTM, a non-
parametric method developed by Thomson 
[1982]. MTM reduces power leakage and esti­
mation uncertainties by simultaneous 
application of optimal windowing functions, 
called tapers, in the time domain. Its signifi­
cance tests help identify weak spectral peaks 
and reject high-amplitude bands of noise. 

The user controls MTM application by se­
lecting the number of tapers and the 
frequency bandwidths for which the tapers 
are optimized. This selection trades off vari­

ance reduction of spectral estimates against 
reduction of power leakage. The Toolkit auto­
matically highlights spectral peaks that are 
significant at confidence levels chosen by 
the user. 

Maximum Entropy Estimates The 
Toolkit also allows spectral estimation by 
MEM. MEM differs from either the correlo-
gram or MTM by its representation of noisy 
oscillatory signals as autoregressive ( A R ) 
processes, rather than as a sum of sinusoids. 
Because of this representation, MEM spectra 
can contain as many sharp spectral peaks, 
where the spectral density becomes infinite, 
as the number M of AR terms in the model, 
and they provide a more data-adaptive de­
scription of the overall spectrum. 

For high M, MEM yields high-resolution 
spectra that often include spurious peaks. 
The Toolkit allows the user to tune the MEM 
spectrum by choosing M in the AR model. Be­
yond that, MEM's spurious peaks are 
eliminated by a combination of approaches: 
determining which peaks survive reductions 
in M; comparing MEM spectra to those pro­
duced by the correlogram and MTM; and 
using SSA to prefilter the original series by re­
taining only the leading RCs—each of which 
contains only a few spectral peaks [Penland 
et al., 1991 ] . The ease of interweaving these 
various analyses in the Toolkit was a major 
motivation for its development. 

Toolkit Application 

To illustrate the flexibility and ease of 
Toolkit use, we analyze the Southern Oscilla­
tion Index (SOI), a climatic indicator of the 
recurring El Nino condition in the tropical Pa­
cific [Keppenne and Ghil, 1992]. SOI is a 
standardized difference between atmos­
pheric sea level pressures at Darwin, 
Australia, and Tahiti. 

To begin, the SOI series is read into the 
Toolkit as an ASCII list, producing the curve 
shown in Figure 1. It has features charac­
teristic of many geophysical time series: 
considerable irregularity hiding tantalizing 
suggestions of periodicity. The challenge is 
to separate the two. 

Preliminary Spectral Estimates As a 
first step, we estimate the power spectrum us­
ing MEM. Upon clicking the "Maximum 
Entropy" button (Figure 1) with the mouse 
pointer and dragging the "MEM Order" slide 
(Figure 2) to set the number of AR terms, we 
calculate an MEM spectrum (Figure 2) . 

The power spectrum contains two domi­
nant peaks with periods around 52 and 26 
months, accompanied by smaller peaks at 
higher frequencies. The dominant peaks are 
the low-frequency (LF) and quasi-biennial 
(QB) components [Rasmusson etai, 1990] 
of SOI, respectively. At this point (or at any 
time during the Toolkit session), MTM or cor­
relogram spectra could be used to verify the 
MEM spectral peaks simply by clicking the ap­
propriate buttons. We find combined 
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nents 1-4; same units as in Figure lb. (b) 
MEM power spectrum of the SSA-filtered time 
series shown in (a); same units as in Figure 2. 
Original color image appears at back of this 
volume. 

application of different spectral methods 
more enlightening than relying on variance 
estimates from a single one. 

SSA Decomposition SSA can be ap­
plied to the data to extract the oscillatory 
components, to display the variability they 
represent, or to remove noise prior to re­
newed spectral estimation. The resulting 
Toolkit menu and SSA eigenvalue spectrum 
appear in Figure 3. As in other PC analyses, 
each SSA eigenvalue is equal to the variance 
captured by the corresponding component, 
and structured signals typically rise above 
the flat tail of the eigenvalue spectrum that 
represents noise. Vautard and Ghil [ 1989] 
showed that oscillatory parts of a time series 
are isolated by pairs of SSA components with 
nearly equal eigenvalues. The eigenvalue 
spectrum (Figure 3) shows two leading pairs 
of nearly equal eigenvalues: 1-2 and 3-4; they 
are found to correspond, indeed, to oscilla­
tions. The Toolkit display includes ad hoc 
error bars to account for sampling effects on 
eigenvalue estimation; these bars help the 
user evaluate breaks in spectral slope be­
tween signal and noise and potential pairing 
of eigenvalues. The Toolkit also offers op­
tions for estimating eigenvalue sampling 
errors by Monte Carlo simulations of either 
white [Ghil and Vautard, 1991; Vautard etai, 
1992] orAR [Allen and Smith, 1994] noise. 

SSA decomposition into oscillations, 
trends, and noise is achieved in terms of tem­
poral empirical-orthogonal functions 
(T-EOFs) and temporal PCs (T-PCs), that are 
recurring temporal patterns and their time-
varying amplitudes, respectively. These 
representations can be examined by clicking 
the T-EOFs" or MT-PCs" buttons (Figure 3) . In 
this brief illustration, we jump ahead to re­
construct the leading oscillations by clicking 
on the "Filtered RCs" button and selecting 
for reconstruction the first four SSA compo­
nents. The result is the filtered time series 
shown in Figure 4a; it captures the main fea­
tures of the original one in Figure 1, while 
effectively removing the noisy part. Notice, in 
Figure 4a, the marked increase in amplitude 
of the filtered SOI series after 1970, following 
a lull in the mid-century. Information about 
the amplitude variations of oscillatory sig­
nals, usually lost in standard spectral 
analyses, is an immediate output from SSA. 

Finally, the RC series can be analyzed by 
any of the spectral estimators provided. The 
power spectrum of each RC is much simpler 
than that of the complete time series [Pen-
land etai, 1991; Vautard etai, 1992].The 
MEM spectrum for the SSA-filtered series 
shown in Figure 4b displays an increase in 
the signal-to-noise ratio from 10 for the unfil-
tered data (Figure 2) to 108 for the filtered 
data (Figure 4b). In this example, an initial 
MEM spectrum (Figure 2) showed peak 
power at 26 and 52 months. The use of SSA 
provided data-adaptive filters for the oscilla­
tions (Figure 3) without having to search for 
some nominally optimal band pass filter. 
The leading oscillatory components were re­
constructed (Figure 4a) and passed again 
through the maximum entropy analysis (Fig­
ure 4b). The next step in such an analysis 
(not shown) is using the Toolkit to quickly 
explore the sensitivity of results to various 
MEM orders and SSA window lengths, to con­
firm the MEM spectrum by application of 
other spectral estimators [Vautard etai, 
1992] or to investigate other SSA components 
above the noise level in Figure 3. 

Toolkit Availability 

The SSA Toolkit has a convenient X-win-
dows graphical user interface (GUI) to 
ensure easy, quick operation. The GUI is 
based on the Tcl/Tk package [Ousterhout, 
1994]. Beneath the GUI are several FORTRAN 
and C programs: 

ssa Performs SSA decomposition and se­
lected reconstructions of an input time series. 

spectrum Computes windowed correlo-
gram and MEM power spectra. 

mtm Computes MTM spectral ampli­
tudes. 

carlo Generates Monte Carlo realiza­
tions of white or red noise; computes error 
bars for the SSA eigenvalues based on those 
realizations. 

These numerical programs are functional, 
without the GUI, on any machine with stand­
ard FORTRAN 77 and C compilers. The 
programs are structured as Unix commands 
and can be invoked in batch mode by simple 
scripts. Source codes are provided. New 
tools in the form of one-pass, argument-
driven Unix-style commands can be added 
directly to the Toolkit, although the creation 
of new control panels requires some knowl­
edge of Tcl/Tk. The GUI, which displays 
various time series and spectra to windows, 
can accommodate different graphics pack­
ages. Currently, the Toolkit supports 
visualization using IDL (a proprietary pack­
age by Research Systems, Inc.) or the public 
domain packages ACE/gr and gnuplot. The 
graphics packages used to display Toolkit 
graphs can copy these to postscript files for 
printing. 

Time series are input as ASCII lists. Practi­
cal size constraints on Toolkit analyses 
usually arise from the width of the SSA or cor-
relogram windows or the number of Monte 
Carlo realizations used to compute error 
bars, rather than the length of the time series. 
As a practical matter, window widths should 
be less than about 300-500, but such limits 
depend on the size and speed of the compu­
tational device—workstation or 
mainframe—used. 

The Toolkit has been ported to DEC, Sun, 
Silicon Graphics, IBM RS6000, and Data Gen­
eral workstations, and should be 
transportable to many other computers. In­
stallation of the software requires about 5 
Mbytes of storage. A compressed version of 
the software and documentation can be ob­
tained by Internet users through anonymous 
ftp at /pub/SSATooIkit.tar.Z on yosemite.at-
mos.ucIa.edu. Users with access to the 
World-Wide Web can get the Toolkit and sup­
porting software by raising the Web page at 
http://www.atmos.ucla.edu/ and following 
the link to the Toolkit. Users without access 
to ftp can obtain copies for a fee by contact­
ing William Weibel, Department of 
Atmospheric Sciences, University of Califor­
nia, Los Angeles, 7127 Math Sciences 
Building, Los Angeles, CA 90024-1565. An In­
ternet mailing list (ssahelp@atmos.ucIa.edu) 
has been instituted to handle questions, sug­
gestions, and bug reports. 

The Toolkit is an evolving package de­
signed with room for future additions and 
enhancements. We encourage feedback on 
its form and future. Other spectral tools, espe­
cially extension to multivariate analysis, are 
planned for future versions. Further elabora­
tion of the confidence tests for SSA 
(including that of Allen and Smith (1994)) 
and Multi-Taper Method, also under consid­
eration, may appear in future versions of the 
Toolkit. The analytical power and user friend­
liness of the Toolkit should make 
geophysical data analysis much more 
tractable. 

This page may be freely copied. 

http://mos.ucIa.edu
http://www.atmos.ucla.edu/
mailto:ssahelp@atmos.ucIa.edu


Eos, Vol. 76, No. 2, January 10, 1995 

Acknowledgments 

The development and application of SSA 
to geophysical time series was carried out by 
the present authors in collaboration with N. 
Jiang, C.L. Keppenne, K.-C. Mo, J.D. Neelin, 
M.C. Penland, G. Plaut, A.W. Robertson, Y. 
Sezginer, S. Speich, and R. Vautard. Earlier 
SSA and MEM codes written and provided by 
Cecile Penland were helpful at the start. Com­
ments by these and numerous other 
colleagues on test versions of the Toolkit are 
gratefully acknowledged. The Monte Carlo 
tests benefitted greatly from communica­
tions—written, electronic, and in 
person—with M.R. Allen. The Toolkit was de­
veloped mostly on equipment and with 
support provided by Digital Equipment Cor­
poration to the University of California, Los 
Angeles, as part of the Sequoia 2000 project. 

PAGES 9-10 
While big earthquakes typically wreack 

havoc for humankind, the biggest deep earth­
quake ever recorded—the magnitude 8.3 
event that occurred 637 km beneath the sur­
face of Bolivia on June 9,1994—has brought 
enlightenment—of sorts. 

Instead of bringing death and destruction, 
the recent Bolivian quake, the largest quake of 
any type in recent decades, has given scientists 
one of the best probes yet of the Earth's interior. 
Within several minutes of the deep rupture, the 
quake benignly shook the ground from Argen­
tina to Canada. But more important, the quake 
shook the Earth like a bell for months thereafter, 
giving scientists a raw data set of the planet's free 
oscillations—like none other. 

The oscillations generated by the Bolivia 
quake are particularly valuable not only be­
cause they are from a big deep quake, but also 
because they were the first to be captured by a 
modern-day seismic network. Data from shal­
low events are not as useful for studying these 
normal mode vibrations because of the inter­
ference caused by surface seismic waves. By 
analyzing the frequency oscillations from deep 
events, scientists have been able to determine 
the density and related properties of rock in 
various parts of the mantle. Geoscientists need 
these calculations to decipher the mecha­
nisms that shift the Earth's plates. The Bolivia 
data set may be the most comprehensive—if 
not the most heavily scrutinized—yet, accord­
ing to Steve Kirby of the U.S. Geological Survey 
in Menlo Park. 

Of primary interest is elucidating the 
mechanism of deep-focus events—the nature 
of which, both seismologically and physi­
cally, has long been controversial. This topic 
was the focus of almost an entire day of dis­
cussion at AGU's Fall Meeting. 

Research for the development of the meth­
ods and their applications to climatic time 
series was supported by NSF grant ATM93-
13217, NOAA grant NA36G90245, and an NSF 
Special Creativity Award to M. Ghil. Use of 
trade names in this article is for identification 
purposes only and does not constitute en­
dorsement by the U.S. Geological Survey. 
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eventually breaks, faults form, which in turn 
can generate quakes, as stress is built up 
along a given fault and then released. 

Mechanisms Explored 

Scientists have looked to other mecha­
nisms to explain deep earthquakes from 
shear instability to delayed deformation. How­
ever, the problem has remained that there 
has been no sure-fire way to test these mod­
els. The Bolivia event presents the best shot at 
it for now. 

One of the leading models has been trans­
formational faulting, wherein a phase 
transition triggers the rupture. However, a 
large volume change is not thought to be gen­
erated because of the ambient shear stress. In 
this model, the atoms of the mantle rock 
known as olivine (Mg,Fe)2Si04, are somehow 
rearranged to form a more condensed min­
eral called spinel, as both the temperature 
and pressure increase when the descending 
slab starts to move. Scientists generally be­
lieve that the differing strengths of the 
minerals may account for the sudden slip of 
the fault, as layers of spinel continue to de­
scend into the Earth. 

Perhaps not too surprisingly, reconciling 
the Bolivia data with the reigning model has 
not been an entirely straightforward process. 
Preliminary analyses reveal that the volume 
change in deep quakes is likely very, very 
small, while the stress drop is likely to be very 
large at about 1 kilobar. Yet the rupture veloc­
ity is very slow at about 1 km/s, especially 
with respect to the shear velocity, which is 
about 6 km/s. In other words, a large fraction 
of energy was expended for some thing other 
than radiating seismic waves, Caltech's 
Kanamori suggests. "Some other process 
must be involved." 

To explain these data, Kanamori and his 
colleague Masayuki Kikuchi of Yokohama 
City University in Japan have proposed a new 
twist to the phase transition model: Melting 

Scientists Get a Closer Look at Mechanism of Deep 
Bolivian Quake 
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dinate. 
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Fig. 4. (a) Reconstruction of SSA compo­
nents 1-4; same units as in Figure 1 b. (b) 

MEM power spectrum of the SSA-filtered time 
series shown in (a); same units as in Figure 2. 

SSA Eigenvalues 

,. 

0 :0 ----�10,- --�2"'0 ---- -3::- 0,- ----4-0 ---- - 5- 0� 
SIngular SIH!ctrllln Aml1�sls 

I Wln� length 

" of SlgnlOcilnt components f8 
Vlul,lIlcel T-EOrs I T-PCs !Flltered Res! 

Cone 
Pairing CriteriA Error Bill'S Co�'arll\ncc 
• Sflme rrequency ... Chili Mo .. Curg 
r strong fft 

v Vl1l1tllrd a: Ghl! v Vitutard et lit!. 

r do trend test v Invern ti\9-0n� v Oroomhelld a Kin? 

Monte cnrto Tut. .. 1 

Fig. 3. SSA menu and log-eigenvalue spec­
trum for the SOl time series, with SSA compo­
nent number on the abscissa and percentages 
of total variance on the ordinate. The compo­
nents are ordered by variance captured. 
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