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Abstract Ensembles of historical climate simulations and climate projections from the
World Climate Research Programme’s (WCRP’s) Coupled Model Intercomparison Project
phase 3 (CMIP3) multi-model dataset were investigated to determine how model credibility
affects apparent relative scenario likelihoods in regional risk assessments. Methods were
developed and applied in a Northern California case study. An ensemble of 59 twentieth
century climate simulations from 17 WCRP CMIP3 models was analyzed to evaluate
relative model credibility associated with a 75-member projection ensemble from the same
17 models. Credibility was assessed based on how models realistically reproduced selected
statistics of historical climate relevant to California climatology. Metrics of this credibility
were used to derive relative model weights leading to weight-threshold culling of models
contributing to the projection ensemble. Density functions were then estimated for two
projected quantities (temperature and precipitation), with and without considering
credibility-based ensemble reductions. An analysis for Northern California showed that,
while some models seem more capable at recreating limited aspects twentieth century
climate, the overall tendency is for comparable model performance when several credibility
measures are combined. Use of these metrics to decide which models to include in density
function development led to local adjustments to function shapes, but led to limited affect
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on breadth and central tendency, which were found to be more influenced by
“completeness” of the original ensemble in terms of models and emissions pathways.

1 Introduction

Resource managers currently face many questions related to potential climate changes, in
particular how climate may change and what regional impacts would ensue. One of the
most pressing questions is whether contemporary resource-management decisions might
increase or decrease future impacts. To address these questions, analysts typically compile
global climate projections and then spatially downscale them for impacts assessment at
regional scales relevant to a given decision. Given that there are more than 20 global
climate models currently in operation, producing simulations of future climate under several
different greenhouse gas (GHG) emission scenarios (Meehl et al. 2005), it is not surprising
that results drawn from such impacts assessments depend on the particular GHG forcing
scenarios and climate models present in these compilations.

Focusing on a few projected scenarios (e.g., bookend analyses) can lead to significant
divergence among the projected future impacts. While such analyses are useful for
illustrating what may be at stake under different future scenarios, they provide limited
guidance for management responses in the present (e.g., Brekke et al. 2004; Cayan et al.
2006; Hayhoe et al. 2004; Vicuna et al. 2007). Rather, it is important for managers to
understand the distributed and consensus nature of projected climate change impacts
(Dettinger 2005; Maurer 2007) so that managers can begin to consider the relative
likelihood of future impacts rather than just isolated examples of potential impacts. In line
with this philosophy, there has been a trend in recent impacts assessments to base the
studies on larger multi-model projection ensembles, as for instance in recent studies of
potential hydrologic impacts in California’s Central Valley (Maurer and Duffy 2005;
Maurer 2007), the Colorado River Basin (Milly et al. 2005; Christensen and Lettenmaier
2006), and in other locations (Wilby and Harris 2006; Zierl and Bugmann 2005).

Expanding regional impacts analyses to consider larger climate projection ensembles
creates the opportunity to address and communicate impacts in the terms of risks rather than
isolated examples of possible impacts. The difference between risk and impact assessments
is that risk goes beyond scenario definition and analysis of associated impacts to also
address relative scenario likelihoods. Framing regional assessments in terms of risk is
attractive from a management perspective because risk information is better suited for
strategic planning, where responses can be formulated based upon weighted prospects of
different impacts. This approach helps to guide the timely use of limited available funds
that might support responses to inherently uncertain future conditions.

The product of a risk analysis is a presentation of distributed impacts from a collection
of scenarios weighted by their estimated likelihoods. In the climate change context,
absolute scenario likelihoods cannot be identified. However, relative- or consensus-based
likelihoods of various scenarios can be estimated from an ensemble of climate projections
by fitting a climate projection density function. Granted, such density functions only
represent a limited portion of the climate change uncertainties, because elements such as
social and physical factors affecting global GHG sources and sinks in the future, climate
response and interactions with these GHG sources and sinks, and alternative climate model
structures are not included. However, the ensemble density functions provide a more
complete basis for using and interpreting the elements of the available ensembles than is
afforded by scenario analyses without such context. Using projection density functions to
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infer relative scenario likelihoods promotes strategic response planning, framed by perception
of which outcomes are — at present — projected to be more likely among projected
possibilities, which is a step forward from not considering scenario likelihoods at all.

Several methods for generating climate projections density functions have been
proposed (Tebaldi et al. 2005; Dettinger 2006). The ensembles employed can include
several greenhouse gas emission pathways, multiple climate models, and multiple “runs” of
a given pathway-model combination differing by initial conditions. In applying these
methodologies, it is natural to ask whether all members from a projection ensemble should
be valued equally. Put another way, there are more than 20 coupled atmosphere—ocean
climate models informing the last assessment from IPCC (2007): in the context of regional
response analysis, are the projections from all of these models equally credible?

This latter thought motivates the two questions considered in this paper: (1) How does
apparent model credibility at a regional scale, translated into relative model weighting and
subsequent model culling, affect estimates of climate projection density functions?, and
(2) How are relative scenario likelihoods, derived from the density function, affected when
model credibility is considered when estimating the function?

To explore the first question, a philosophy is adopted that relative model credibility in
projecting twenty-first century climate can be estimated from relative model accuracy in
simulating twentieth century climate. Some studies have found little effect of weighting future
climate projections by perceived differences between model completeness (e.g., Dettinger
2005, weighted models based on whether they required “flux corrections” or not to avoid
climate drift and found little difference in estimated density functions). However, several
interpretations of projection ensembles have been designed around the concept of weighting
results by perceived historical accuracies (AchutaRao and Sperber 2002, 2006; Bader et al.
2004; Phillips et al. 2006). Following this approach, a procedure is developed here, beginning
with a model credibility analysis to produce relative model credibility indices, as a basis for
model culling, followed by a nonparametric procedure for estimating climate projection
density functions, with and without consideration of model credibility results.

In the latter step, an “Uncertainty Ensemble” of climate projections is used to fit the
density functions. In relation to the second question, a subset of the Uncertainty Ensemble
is identified (i.e. Impacts Ensemble) for which relative scenario weights are derived from
the density functions fit with and without consideration of model credibility. The nested
nature of this Impacts Ensemble within the Uncertainty Ensemble represents a typical
situation in regional risk assessment where the feasible size of an Impacts Ensemble (i.e.
scenarios studied in detail for impacts in multiple resource areas) is less than what can be
considered when fitting the climate projection density function because of the computa-
tional intensity of the impact calculations. The remainder of this paper presents the
methodologies for model credibility and climate projection density analyses (section 2),
results from applying these methods to a particular region (i.e. California’s Central Valley)
where the concern is water resources impacts (section 3), a discussion of method limitations
and areas of potential improvement (section 4), and a summary of major conclusions
(section 5).

2 Methodology

The analytical sequence features two primary parts. The first part involves a model
credibility analysis based on how well selected parts of the historical climate are simulated
by the various models, and includes the following steps: (1) choosing relevant climate
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variables and reference data, (2) choosing performance metrics and computing measures of
model-to-observation similarities, and (3) deriving weights and culled model groups based
on these measures. The second part is an analysis of climate projections where projection
density functions are fit with and without consideration of results from the model credibility
analysis.

The analyses are based on simulated climate variables from coupled atmosphere—ocean
general circulation models (i.e. WCRP CMIP3 models) used to produce (a) twenty-first
century climate projections under both SRES A2 and B1 emissions pathways (IPCC 2001)
and (b) simulations for the “climate of the twentieth century experiment (20C3M),”
conducted by CMIP3 participants (Covey et al. 2003). The Lawrence Livermore National
Laboratory’s Program for Climate Model Diagnosis and Intercomparison (PCMDI) hosts a
multi-model archive for 20C3M historical simulations, twenty-first century projections, and
other scenario and control run datasets. Among the models producing 20C3M simulations,
the number of available “runs” varied per model, with runs differing by initialization
decisions. An attempt was made to focus on models that had simulated both A2 and B1 on
the grounds that these pathways represent a broad and balanced range of SRES possibilities
(IPCC 2001). However, this criterion was relaxed for two of the selected models from
which only A2 or B1 simulations were available.

In total, 17 climate models were represented in our survey (Table 1). Collectively they
were used to produce 59 20C3M simulations (used for the model credibility analysis) and
75 climate projections comprised of 37 SRES A2 simulations and 38 SRES B1 simulations.
The set of 75 climate projections served as the Uncertainty Ensemble, mentioned in
section 1, and was used in climate projection density analysis. From the Uncertainty
Ensemble, subsets of 11 SRES A2 and 11 SRES Bl projections were identified as a
22-member Impacts Ensemble (Table 1). The selected 22 projections are the same
projections considered in a previous study on potential hydrologic impacts uncertainty
within the Sierra Nevada (Maurer 2007).

2.1 Credibility analysis: choosing simulated and references climate variables

The first step in the model credibility analysis involved choosing simulated climate variables
relevant to the geographic region of interest (i.e. Northern California in this case study), and
identifying climate reference data to which simulated historical climates could be compared
(i.e. 20C3M results listed in Table 1). Three types of variables were used: local variables that
define Northern California climatology, distant variables that characterize global-scale
climatic processes, and variables that describe how global processes relate to the local
climatology (i.e. teleconnections). This mix was chosen because the first interest for this
regional scale assessment was how the local climate variables might change in the future.
However, in the projections considered here, those changes are driven and established by
global scale forcings (GHGs) and resulting processes. Thus, both local and global
performances are important. Furthermore, the connection between global and local processes
must be accurately recreated in the models (indicated by either the presence or absence of
significant inter-variable correlation, i.e. teleconnections) in order for their simulated local
responses to global forcings to be considered reliable.

Two local variables were used to describe the regional climatology: surface air
temperature and precipitation conditions (i.e. NorCalT and NorCalP near {122W, 40N}).
Global-scale phenomena driving the regional climatology via teleconnections include
pressure conditions over the North Pacific (related to mid-latitude storm track activity
upwind of North America) and the phase of the El Nifio Southern Oscillation (ENSO;
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Table 1 Climate projections and models included in this case study

WCRP CMIP3 Model abbreviation in Model Projection run numbers® 20C3m
model 1.D.* this study number Ensemble

Uncertainty Impacts

A2 B1 A2 Bl
CGCM3.1(T47) ccema_cgem3|] 1 1...5 1...5 1...5
CNRM-CM3 cnrm_cm3 2 1 1 1 1 1
CSIRO-MK3.0 csiro_mk30 3 1 1 1 1 1.3
GFDL-CM2.0 gfdl cm20 4 1 1 1 1 1.3
GFDL-CM2.1 gfdl_cm21 5 1 1 1...3
GISS-ER giss_model_er 6 1 1 1 1 1.9
INM-CM3.0 inmem3_0 7 1 1 1 1 1
IPSL-CM4 ipsl_cm4 8 1 1 I 1 1
MIROCS3.2(hires) miroc32_hires 9 1 1
MIROC3.2(medres) miroc32_medres 10 1...3 1..3 1 1 1.3
ECHAMS/MPI-OM  mpi_echam5 11 1...3 1...3 11 1.3
MRI-CGCM2.3.2 mri_cgecm232a 12 1...5 1...5 I 1 1.5
CCSM3 ncar_ccsm30 13 1...5 1...8 1...8
PCM ncar_pcml 14 1..4 2.3 1 2 1.4
UKMO-HadCM3 ukmo_hadem3 15 1 1 1 1 1.2
UKMO-HadGEM1  ukmo_hadgem! 16 1 1..2
ECHO-G miub echo-g 17 1...3 1...3 1...5
Total Runs 37 38 11 11 59

?From information at Lawrence Livermore National Laboratory’s Program for Climate Model Diagnosis
and Intercomparison (PCMDI), September 2006: http://www-pcmdi.llnl.gov

® Run numbers assigned to model- and pathway-specific SRES projections and model-specific 20c3m
simulations in the WCRP CMIP3 multi-model data archive at PCMDI.

affecting Pacific-region interannual climate variability and beyond). Two measures of these
phenomena were used in this study, respectively: the North Pacific Index (NPI), describing
mean sea level pressure within {30N-65N, 160E-140W} and the Nino3 Index describing
ENSO-related mean sea surface temperature within {SS—5N, 150W—90W}.

Monthly time series of each evaluation variable were extracted from each 20C3M
simulation for the latter half of the twentieth century (1950-1999). Likewise, monthly
1950-1999 “reference” data were also obtained. For NPI, NorCalP, and NorCalT, the
reference data were extracted from the NCEP Reanalysis (Kalnay et al. 1996, updated and
provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at
http://www.cdc.noaa.gov/), which is a data set of historical observations modified and
interpolated with the use of an atmospheric climate model and which describes climate
conditions at roughly the same scale as the coupled climate models used in the historical
simulations. The reference data for Nino3 were obtained from the Monthly Atmospheric
and SST Indices archive provided by the NWS Climate Prediction Center, Camp Springs,
Maryland, USA, from their Web site at http://www.cpc.noaa.gov/data/indices/.

Simulated and reference time series were compared during the 1950-1999 period. It is
arguable whether this 50-year historical period should be shorter and more recent. The
decision to consider 1950-1999 as opposed to a shorter period was driven by recognition
that 20C3M simulations express interdecadal variability that might be out of phase with that
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observed during the twentieth century, leading to exaggerated simulation-reference
differences or similarities based solely on choice of sampling overlap period.

2.2 Credibility analysis: choosing performance metrics and teleconnections

The next step was to choose performance metrics that describe statistical aspects of the
local and global variables and their teleconnections. For each variable, a set of six metrics
was evaluated (Table 2): the first three statistical moments of annual conditions (mean,
variance, skewness), an interdecadal variance describing lower frequency variability
(Table 2, note 4), amplitude of seasonality defined by the range of mean monthlies, and
phase of seasonality defined by correlation between simulated and reference mean
monthlies. For the local variables (i.e. NorCalT and NorCalP), the characteristics of
extreme positive anomalies were considered (i.e. the annual maximum monthly value
exceeded in 10% of years). Seasonal correlations (teleconnections) between the two local
and two global variables were considered, as well as seasonal and annual correlations
between the two global variables. For NorCalT, the 50-year trend was used as an additional
variable-specific metric. For NorCalP, a metric of drought recurrence and severity was also
included and framed by knowledge of relevant 1950-1999 droughts in the case study
region. Because the most significant sustained drought in the Northern California
instrumental record was about 6 years in duration (1987-1992), the drought metric was
defined as the running 6-year precipitation total exceeded by 90% of the 6-year spells
within each 50-year time series. Finally, as a measure of how temporally realistic the
simulated ENSO processes were, and because local interannual variability is influenced by
ENSO, a metric describing El Nifio reoccurrence was defined as the spectral power of the
50-year Nino3 time series concentrated in the 2-to-7 year range.

This is a fairly extensive array of metrics, and it is difficult to know which of the metrics
are most pertinent to the projection of future impacts of increasing GHGs. Application of
this methodology thus will involve consideration of which metrics are the most relevant
measures of model credibility. In applications of this approach to other regions, decisions to
include other, or additional, metrics beyond those discussed herein should depend on the
region and climate in question. Although no definitive statements can be made as to which
metrics are the more relevant, it is reasonable to expect that different impacts assessment
perspectives might gravitate toward different metrics. For illustration purposes, three
perspectives are defined and used here to explore sensitivity of impressions to this question.
The perspectives are loosely termed Water Supply, Hydropower, and Flood Control. For
each perspective, the 49 metrics of Table 2 were reduced to six arbitrarily chosen metrics as
being “more relevant.”

— For the Water Supply perspective, managers are assumed to have the ability to
seasonally store precipitation-runoff and thus might be more concerned about how
climate models reproduce the past precipitation in terms of long-term mean and
seasonality phase, past temperature in terms of long-term trend and seasonality phase,
multi-year drought severity, and global teleconnections relevant to the precipitation
season (e.g., Nino3-NorCalP during Winter).

— For the Hydropower perspective, concerns were assumed to be similar to those of
Water Supply (e.g., precipitation long-term mean, temperature long-term trend), but
with more concern shifted to other types of global teleconnections with local climate
(e.g., NPI correlation with NorCalP during autumn and winter) and on global
interannual variability in general as it might affect hydro-energy resources from a larger
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Table 2 Variables and performance metrics used in this model credibility study

Performance metrics Metrics by climate variable, 1950-1999 monthly data, describing:
[A] global, [B] local, [C] teleconnections

NPI* NorCalP NorCalT Nino3
Mean® [A] (B" [B] [A]
Variance® [A] [B] [B] [A]
Interdecadal variance® [A] [B] [B] [A]
Skewness® [A] B] [B] [A]
Seasonality amplitude® [A] B] [B] [A]
Seasonality phase’ [A] [B] [B] [A]
6-year mean, 90%exc® [B]
Annual maximum month, 10% exch [B] [B]
Trend in annual mean (50-year) [B]
El Nifio reoccurrence' [A]
Correlation with Nino3 during OND' [C] [C] [C]
Correlation with Nino3 during JEM  [C] [C] [C]
Correlation with Nino3 during AMJ [C] [C] [C]
Correlation with Nino3 during JAS  [C] [C] [C]
Correlation with NPI during OND /C] [C]
Correlation with NPI during JFM [C] [C]
Correlation with NPI during AMJ [C] [C]
Correlation with NPI during JAS [C] [C]
Correlation with Nino3, annuallyk [C]

OND October through December, JFM January through March, AMJ April through June, JAS July through
September

#NPI (North Pacific Index) is defined as monthly mean sea level pressure within (30N-65N, 160E-140W),
Nino3 is defined as monthly mean sea surface temperature within (5S—5N,150W-90W), and NorCalP and
NorCalT are monthly precipitation and surface air temperatures near 122W and 40N.

® Mean annual total for NorCalP; mean annual average for other variables.

¢ Computed on annual total or mean values (see note b).

4 Computed on annual values smoothed by a 9-year moving average.

¢ Computed on monthly means, identifying the difference between maximum and minimum values.
fComputed as correlation between simulation and climate reference monthly means (see note ).
£90% exceedence value in sorted series of running 6-year mean-annual values.

"10% exceedence value in sorted series of annual maximum month values.

Based on spectral analysis of the time series phase variability (see note m), identifying the average power in
2- to 7-year period band.

I Computed as correlation between seasonal mean conditions between the indicated variable pair (row and
column; see abbreviations).

k . . o
Same as note j, but computed as correlation between annual mean conditions.

! Climate reference for NPI, NorCalP, and NorCalT from NCEP/NCAR Reanalysis monthly data products at
NOAA Climate Diagnostic Center; Climate reference conditions for Nino3 from monthly index values at
NOAA Climate Prediction Center.

™ Processing involves removing monthly means, and then scaling total power by normalizing the mean-
removed time series to unit variance.

"Metric Subsets: Water Supply (bold), Hydropower (italics), Flood Control (underline).
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regional hydropower market encompassing the runoff region of interest (e.g., Nino3 El
Nifo reoccurrence).

—  For the Flood Control perspective, more focus was assumed to be placed on how the
climate models recreate more extreme aspects of precipitation climatology (e.g.,
precipitation skewness, seasonality amplitude, annual maximum month that is
exceeded in 10% of the 50-year evaluation period).

Notably, historical simulations were not rated in terms of whether they reproduced
precipitation trends of the past 50 years. As noted previously, the region in question is
subject to large, significant and persistent multidecadal climate fluctuations historically,
under the influence of multidecadal climate processes over the Pacific Ocean basin and
beyond (e.g., Mantua et al. 1997; McCabe et al. 2004). Historically the multidecadal Pacific
Ocean influence has resulted in significant and persistent climatological differences
between the 1948-1976 period and the 1977-1999 period. Although these long-term
differences may very well be mostly natural, random and reversible, they have imposed a
trend-like character on the Northern California climate during 1950-1999. Even a skillful
coupled ocean—atmosphere model, initiated much earlier in the nineteenth or twentieth
centuries, would not be expected to reproduce the timing of such natural multidecadal
fluctuations in a way that would reproduce the trend-like halving of the 1950—1999 window
considered here. Thus the presence or absence of a regionalized precipitation trend in
observations and apparent difference in historical simulated trend did not seem to be a good
measure of the simulation skill in the particular study region considered here.

2.3 Credibility analysis: deriving model weights and model culling

After computing simulation metrics, run-specific calculations of simulated-minus-reference
metric differences were pooled by model and averaged to produce 17 model-representative
differences. A distance-based methodology was then used to measure overall model-to-
reference similarities for each set of metrics. Under the distance-based philosophy, a
distance is computed within a “similarity space” defined along “metric dimensions.” For
example, the similarity space could be a seven-dimensional space spanned by the seven
NPI performance metrics, or a 49-dimensional space spanned by all performance metrics in
Table 2. Given a space definition, distance can be computed using one of several distance
formulas. Euclidean or Manhattan distance formulas were explored in this study (Black
2006), with focus ultimately placed on Euclidean distance. Results were found to be
insensitive to choice of distance formula, primarily because metric differences were scaled
to have unit variance across models for each metric, prior to distance calculation, so that
metric differences generally all had magnitudes near or less than one. Such magnitudes
aggregate into similar distances using the Euclidean and Manhattan formulas.

The purpose of scaling metric differences was to prevent metrics measured in large units
from dominating the computed distance (e.g., the El Nino reoccurrence metric differences
have values on the order of 10°> where as the seasonality and teleconnection correlation-
metrics have differences on the order of 10" to 107%). A disadvantage of scaling the metric
differences is that it can exaggerate a metric’s influence on model discrimination even
though pre-scaled metric differences were quite similar (e.g., simulated NorCalT seasonality
phase and difference from reference).

For a given set of metrics, the procedure results in computation of 17 model-
representative distances from references. Relative model weights were then computed as the
inverse of this distance. Finally, a threshold weight criterion was used to cull models from
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consideration in the subsequent climate projection density analysis. The model-culling
depends on the metric set used and the threshold model weight selected to differentiate
between models that will be retained and those that will not. For illustration, in this study,
the weight threshold was defined to be median among the 17 weights, so that the nine
highest weighted models were retained from among the 17 considered.

Looking ahead to the climate projection density analysis, the use of these credibiltiy
analysis results could have involved proportional weighting of the models rather than
culling of models. All models could have been retained and various methods to
proportionally represent model contribution in the projection density functions could have
been used. This alternate approach was explored, with density functions fit using
nonparametric techniques (section 2.4). However, it led to excessively multi-modal,
“peaky” density functions, set up by the interspersed positions of fitting data (i.e. specific
projections) from “less credible” models and “more credible” models. and was abandoned
for the culling-based approach used here.

2.4 Climate projection density analysis, with and without model credibility

Density functions were constructed for projected anomalies of 30-year average “annual
total precipitation” and “annual mean surface air-temperature’ [i.e. d(P) and d(7),
respectively], evaluated for the 20102039 and 2040-2069 periods relative to a 1950-
1999 base period. Several methodologies have been proposed for developing density
functions that describe likelihoods of univariate or multivariate climate projections (Tebaldi
et al. 2005; Dettinger 2006). An empirical procedure is used here, involving nonparametric
density estimation using Gaussian kernels (Scott 1992; Wilks 1995) with optimized
bandwidths (Silverman 1986). For the multivariate case of jointly projected anomalies of
temperature and precipitation, a product-kernel extension of the univariate approach is used
(Scott 1992)). Nonparametric density estimation has been applied in numerous statistical-
hydrology studies (e.g., Lall et al. 1996; Piechota et al. 1998). It will be shown that very
similar joint density functions are obtained by using another estimation approach (Dettinger
2006). The emphasis here is on the common motivation underlying these methods: to
consolidate projection information into distributions that help focus planning attention on
ensemble consensus rather than extremes (Dettinger 2006), and whether relative model
credibility should be factored into this consolidation.

A key decision in estimating the density functions was how to deal with the various
numbers of simulations available from a given pathway-model combination (e.g., model
CCSM3 contributes eight SRES B1 simulations whereas model PCM contributes two). In
the present study, all simulations from all contributing models have been treated as equals.
Just as the culling approach used here could have been replaced with a weighting of all the
models, this assignment of equal weights to all of the simulations could have been replaced
by weightings of the contributions from various simulations that avoided overemphasis of
simulations from the more prolific modeling groups. Such weightings were explored in this
study and tended to yield results similar to the distributions shown herein, especially with
respect to the central tendencies and spans of the density functions.

In applications of the product kernel for bivariate density estimation, relative variable
scales and choices for variable-specific domain resolution and range can influence results.
To account for this influence, each univariate function contributing to the product kernel
was fit to anomalies scaled by their respective standard deviations. After constructing the
bivariate density function from these scaled data, the function values relative to each scaled
anomaly position were mapped back into their unscaled values.
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o Fig. 1 a Scaled model-specific average difference between multiple 20c3m run results and Reference for
metric types [A] and [B] in Table 2. Scaling involves pooling run- and metric-specific differences across
models and scaling collectively to unit variance. Shading shows magnitude of scaled difference, with darker
shading showing greater magnitude of difference. “X” and “O” symbols are used to indicate the sign of
difference from reference. b Similar to a, but for metric type [C] in Table 2

3 Case study results — Northern California
3.1 Credibility analysis

As mentioned in section 2, the case study region for this study was Northern California,
leading to the focus on two relevant local climate variables for credibility analysis (NorCalP
and NorCalT), two global variables influential on local variables (NPI and Nino3), and
respective global-local teleconnections. Summaries of scaled, model-representative, metric
differences between simulated 20C3M results and observational references are shown on
Fig. l1a and b. The figures qualitatively indicate relative differences among models for each
metric. They do not indicate specific differences for a given model and metric. For example,
consider differences between each models’s average-20C3M NPI Mean and Reference NPI
Mean (Fig. la, top row). The figure shows shading that scales from light to dark as the
magnitude of a difference increases; the sign of the difference is indicated by “x” for
negative and “o” for positive. Results suggest that “mpi echam5” and “ukmo hadgem”
generally did a better job reproducing Reference NPI Mean. As another example, consider
the bottom row of Fig. la, which shows that the models consistently underpredicted the
Reference trend in NorCalT during 1950-1999. However, what isn’t shown on Fig. la
(because specific differences are not shown) is that all models correctly simulated a
warming trend, just not enough warming compared to Reference.

Figure 2 indicates relative model weights derived for each model based on the metric
values indicated in Table 2 (i.e. All Variables and Metrics, and metric sets related to the
Water Supply, Hydropower, and Flood Control perspectives). The latter three sets were
defined and discussed in section 2.2. For the “All Variables and Metrics” case, which
incorporated all 49 metrics in Table 2, the relative model weight varies among models by
roughly a factor two. Projections from the “gfdl cm2 0,” “miroc3 2 medres,” and “ncar
cecsm3 0” models would be granted more credibility in this context (Fig. 2). For the “gfdl
cm2 0” and “miroc 3 2 medres” models, their greater weights stem from scoring well in
multiple variable-specific subsets. The greater weight for the “ncar ccsm3 0” model was
obtained more by scoring well in the NorCalP subset. For the three perspectives, which
focused on considerably fewer metrics, the range of relative model weights grows to a
factor of 3 to 4.

Retaining models having weight greater than or equal to the median weight among the
17 model-specific values, Table 3 shows groups of retained models based on each set of
model weights from Fig. 2. The mix of retained models differs depending on which
variables were used to decide credibility. This is particularly the case if credibility is
determined by fewer simulation metrics. The ensemble of coupled climate models
providing projections includes fairly wide ranges of credibility when individual metrics
are considered, but have more similar credibility when the intercomparison is made across a
suite of simulated variables. That is, generally, a model may do very well on one metric but
not another, and overall these differences average out for most model-to-model
comparisons when several dozen metrics are brought to bear.

The effect on deciding model retention of various choices of metric sets was explored,
with a subset of results illustrated on Fig. 3, which shows how model retention varies for
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Fig. 2 Model Weights computed based on different metric sets (see Table 3). For a given metric set, model
weights are scaled collectively to sum to 100

Climate Model

each of the combinatorial possibilities of one- to eight-metric sets from the type [B] metrics
associated with NorCalP (Table 2). Results show that, while model retention varies with the
metric set used, some models would be more frequently retained and thus are could be
considered to be the relatively more credible models for simulating NorCalP (e.g., “ukmo
hadgeml,” “ncar pcm,” “ncar ccsm3 0,” “miroc3 2 medres,” “ipsl cm4,” “inmem3 0,” and
“gfdl 2 0”). Next generation models (e.g., “gfdl cm 2 1” compared to “gfdl cm 2 0”) and
higher resolution models (e.g., “miroc3 2 hires” compared to “miroc3 2 medres”) do not
necessarily fare better than their predecessors in such credibility evaluations.

3.2 Climate projection density functions

The results from Table 3 were carried forward to the construction of climate projection
density functions. Prior to fitting density functions, ensembles of projected time series
(Table 1) for surface air temperature and precipitation anomalies, as simulated near {122W,
40N}, were extracted from the A2 and BI1 simulations retained in the previous step.
Anomalies were computed as deviations of the projected monthly values from the model’s
1950-1999 20C3M monthly means. Projected anomalies were then bias-corrected to
account for model tendencies relative to observations on the projected quantities (i.e.
NorCalP and NorCalT from Reanalysis). Bias-correction was performed on a month-
specific basis by multiplying projected anomalies by the ratio of Reanalysis monthly means
to the model’s 20C3M monthly means. After bias-correction, monthly anomalies were
consolidated into annual mean surface air temperature anomalies and annual total
precipitation anomalies for each the 75 projections (Fig. 4).
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Table 3 Model membership in projection ensemble after culling by model credibility using different metric sets™”

WCRP CMIP3 Model 1.D.° Metric Set®
All variables Water supply Hydropower Flood control
and metrics metrics metrics metrics

CGCM3.1(T47)

CNRM-CM3

CSIRO-MK3.0 X X

GFDL-CM2.0 X X X X
GFDL-CM2.1 X X

GISS-ER

INM-CM3.0 X

IPSL-CM4 X

MIROCS3.2(hires)

MIROC3.2(medres) X X X X
ECHAMS/MPI-OM X

MRI-CGCM2.3.2 X X X

CCSM3 X X X X
PCM X X X X
UKMO-HadCM3 X X X

UKMO-HadGEM 1

ECHO-G X X X

?Based on evaluation of models’ 20c3m Euclidean similarity to Reference (Table 2, note I).

® First column considers all variables and metrics from Table 2. Remaining three columns consider six
metrics chosen as relevant to three impacts perspectives (Table 2, note n).

°WCRP CMIP3 Model L.D. explained in Table I, note a.

Each time series of projected annual anomalies was averaged over the periods 2010—
2039 and 2040-2069, leading to two 75-member pools of projected “30-year mean”
anomalies (i.e. projected “climatological” anomalies) for density function fitting. Density
functions for projected climatological temperature anomalies [d(7)] and precipitation
anomalies [d(P)] are shown on Fig. 5a and b, respectively. Density functions were
constructed for each projected quantity and period for five cases: “No Model Culling,”
meaning that functions were fit to all 75 projections listed in Table 1, and the four basis
metric sets used for model culling (Table 3, columns 2-5). Anomaly positions of the
22-member Impacts Ensemble (sections 1 and 2) are also shown on the horizontal axes of
each figure. Density functions for jointly projected climatological anomalies for
temperature and precipitation [d(7,P)] are shown on Fig. 6a and b, for the 2040-2069
period only and respectively for the “No Model Culling” and “Cull Basis: Water Supply”
(Table 3, column 3). Also shown on Fig. 6a and b are two density surfaces, one estimated
using product kernel technique described in section 2, and another using a second
estimation method described by Dettinger (2006). The similarity of the estimated surfaces
suggests that choice of estimation methods is not crucial here.

Focusing on how d(7) varies with the choice of retained models, it is clear that the
choice of models led to some changes in density magnitudes within the functions. However,
comparison of the functions for the non-culled and culled cases shows that the general
spread and central tendencies of the density functions are not drastically affected by the
how model credibility assessment was used to cull models. Moreover, the positions of the
dominant modes are generally consistent. It seems that the 75-member ensemble of
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Fig. 3 Sensitivity of model culling results to choice of NorCalP metrics subset (Table 2). All combinations
of one to eight NorCalP metrics are considered. For each metrics set, relative model weights were computed,
and a “greater than or equal to median weight” criterion was used to determine model-membership in the
projection ensemble. Model-membership frequency was then assessed across metric sets, shown here as a
percent-frequency

projections included sufficient scatter and structure so that the spread and central tendency
of d(7) could be captured with any of a large number of possible subsets and weightings.

For d (P), the decision of which models to retain or emphasize was more influential. The
central tendency of d (P) shifted to a more negative anomaly values compared to the “no
change” central value obtained from the full 75-member ensemble. That said, once the less
credible models were dropped, the choice on which metric basis to use for culling seemed
to be less significant, and the central tendencies and spread of d(P) functions were
relatively similar.

Comparison of d(7,P) based on “No Model Culling” and “Cull Basis: Water Supply”
reflects a combination of the impressions drawn from the various d (7) and d (P) functions.
Like d(7), the breadth and central tendency of the d (7,P) relative to the T-axis is relative
unaffected by decision to cull models. And like d (P), the decision to cull models using the
Water Supply perspective causes the peak of the density surface to shift toward a more
negative anomaly position.

3.3 Using climate projection density functions to derive scenario weights

Having fit climate projection density functions, the focus now shifts to the nested set of
projection members that might be studied for detailed impacts (i.e. the Impacts Ensemble,
described in sections 1 and 2), and their respective plotting positions within each of the
density functions. The purpose is to assign relative scenario weights based on scenario

@ Springer



Climatic Change

100 T T T T 8 T T T T

'60 ‘4 1
2000 2020 2040 2060 2080 2100 2000 2020 2040 2060 2080 2100
Year Year

Fig. 4 Projected annual anomaly time series, computed relative to 1950-1999 NCEP Reanalysis (Kalnay et al.
1996) annual total precipitation (cm) and mean annual surface air temperature (°C) in Northern California near
{122W, 40N}. Time series are from the 75 projection ensemble listed in Table 1

densities within either d(7), d(P), or d(7,P). As mentioned, the Impacts Ensemble includes
22 of the 75 projection members used to estimate the density functions. The positions of
those 22 members are shown on the horizontal axes of Fig. 5a and b, and as circle-cross
symbols overlaying the larger “x” symbols on Fig. 6a and b.

Scenario-specific point-densities were identified from six projection distributions: d(7)
(from Fig. 5a), d(P) (from Fig. 5b), or d(7,P) (Fig. 6a and b), from both the “No Model
Culling” and “Cull Basis: Water Supply” functions. These point-densities were then
considered in aggregate to imply relative scenario likelihoods in the context of a detailed
and computationally intensive risk assessment based on these 22 scenarios. Each of the six
sets of scenario densities were translated into corresponding sets of scenario weights
(Fig. 7) by rescaling each set of 22 densities so that they sum to 22 (i.e. default scenario
weight would be one, and a set of 22 density-based weights would have a mean of one).

When focus is placed on a projected quantity or joint-quantities, particular choices of
models included in the density estimation process had minimal effect on the relative
magnitudes of scenario weights [e.g., compare weights from d(7) fit with models from “No
Model Culling” versus models from “Cull Basis: Water Supply”]. More significantly,
however, the choice of projected quantity was very significant in determining relative
scenario weights [e.g., compare weights from d(7) relative to weights from d(P) or d(7,P)].
Questions remain as to which projected quantities should steer integration of impacts for the
assessment of risk. Addressing this question may be a more important decision for the risk
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| Fig. 5 a Density functions for projected climatological surface air temperature anomaly (i.e. change in
projected 30-year mean from 1950 to 1999 mean in Northern California near (122W, 40N)) evaluated for the
2010-2039 and 2040-2069 periods. “No Model Culling” implies density function fit to all 75 projections
listed in Table 1. Other legend labels correspond to subsets of these 75 projections, where model-contribution
to the subsets is indicated by the credibility-based model subsets listed in Table 3 (columns 2 through 5).
Circle-cross symbols on horizontal axis show anomaly positions of a 22-member subset (i.e. “Impacts
Ensemble”) of the 75-member set of fitting projections. b Same as a, but for projected climatological
precipitation anomaly

assessment than the decision on whether to consider model filtering when constructing the
climate projection density function. Conceptually, if both projected temperature and
precipitation changes are considered in the risk assessment, then perhaps d(7,P) might offer
the preferred information. Moreover, if the projected temperature and precipitation trends
are correlated, then d(7,P) would also be preferred.

Fig. 6 a Density function for @
jointly projected climatological
surface air temperature and 2 .
precipitation anomalies (i.e.
change in projected 30-year mean
from 1950 to 1999 mean in
Northern California near (122W,
40N)) evaluated for the 2040—
2069 period. Dashed line shows
0.05 interval (ascending in value
from ~0 at plot perimeter). Solid
contours show the density surface
estimated using the nonparamet-
ric technique. Dashed contours
show the density surface estimat-
ed using the second technique
(Dettinger 2006). Light-colored
cross symbols show positions of
the joint-anomalies from the 75
fitting projections in Table 1.
Circle-cross symbols on
horizontal axis show anomaly b
positions of a 22-member subset

(i.e. “Impacts Ensemble”) of the
75-member set of fitting projec-

tions, and overlie the “x”
symbols marking these same
members as they’re part of the
75-member fitting ensemble.

b Same as a, but with the density
function fit to a retained-model
subset of “Uncertainty Ensemble”
projections (explaining why there
are fewer “x” and circle-cross
fitting data relative to a). Model
culling reflected the Water
Supply perspective (Table 2) and
associated model membership
(Table 3)
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Fig. 7 Sampled densities from six density functions function coordinates corresponding to projected “Impacts
Ensemble” anomalies for the 2040-2069 period. Six functions correspond to three projected conditions, fit to a
projection ensemble assembled with or without model filtering. Conditions are projected climatological surface air
temperature anomaly (Fig. 5a), precipitation anomaly (Fig. 5b), and joint anomalies for both (Fig. 6a, b). Model
culling is based on the Water Supply perspective (Table 2) and associated model membership (Table 3)

3.4 Discussion

Revisiting the density functions, it is notable that the functions are not smooth and indeed
tend to be multi-modal, contrasting from parametric density functions that might have been
constructed from the same data. The multi-modal aspects of d(7), d(P), and d(7,P) are
introduced by the nonparametric density estimation technique used in this case study
(which might be more easily interpreted as constructing a smoothed ‘“histogram-like”
functions from the fitting data). These effects are somewhat muted when the information
from the density functions are presented in terms of cumulative densities, or cumulative
distribution functions [e.g., D(7) and d(P) derived for the 2040-2069 period from d(7) and
d(P), respectively, shown on Fig. 8]. For decision-makers, it may be preferable to show
scenario possibilities in terms of cumulative distributions or quantiles rather than density
functions. For example, decision-makers might hold the risk “value” that planning
strategies should accommodate a range of projected climate conditions up to a threshold
change exceeded by a minor fraction of projections (e.g., 10%). Applying this hypothetical
decision criterion using results from this study, planning would be done to accommodate
changes up to [—] deg C or [-] cm of annual precipitation, considering the various D(7) and
d(P) functions on Fig. 8. If the decision criterion were modified to consider jointly
projected occurrence of temperature and precipitation anomalies, then information from
D(7) and d(P) would have to be replaced by an estimate of D(7,P) using density
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Fig. 8 Cumulative distribution functions developed from the density functions of projected climatological
surface air temperature and precipitation anomalies (Fig. 5a and b, respectively) evaluated for 20402069 period

information in either Fig. 6a or b. However, switching focus back to the task of conducting
climate change risk assessment, it is necessary to assign relative scenario likelihoods to
individual impacts scenarios. For this objective, density functions, rather than cumulative
distributions, are needed given that the former reveal how a specific projection member is
positioned within the context of projection consensus and breadth.

Finally, on the matter of how density function form may be sensitive to the fitting
technique, the sensitivity of derived scenario weights to fitting technique was explore by
reconstruction of d(7,P) for the 20402069 period and “No Model Culling” and “Cull
Basis: Water Supply,” using the principal component (PC) resampling technique described
in Dettinger (2006). Figure 6a and b show density contours from this technique, which can
be compared to those developed using the nonparametric technique. As mentioned,
comparison of these two surfaces shows that choice of technique had minimal effect on the
function’s central tendency and breadth. The distributions obtained from the two methods
also share the strong correlation that tends to pair wetter scenarios with (relatively) cooler
scenarios and drier scenarios with the warmest scenarios. This correlation, however, was
much muted when the resampling approach was adjusted to avoid weighting the more
prolific model groups more than those that provided only single realizations of each model/
emissions scenario combination (not shown). Further comparisons of the two sets of
contours will indicate that only the general features of these distributions can be estimated
in a confident, methods-independent way.
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4 Limitations

The present analysis is subject to several limitations. First, note that these methods provide
information on climate projection consensus and not the true probability of climate change.
Understanding this limitation will be important in a decision-making context where
decision-makers may not anticipate the complex appearance of the density functions, which
are as stated are essentially smoothed, multi-modal, “histogram-like” functions. The
appearance of these functions is set up by use of nonparametric techniques to fit the
functions rather than imposing parametric forms (e.g., Gaussian), and that the function was
fit to a limited and not necessarily homogeneous projection sample. Once the decision-
makers get used to these odd looking distributions, it will be equally important that they not
be over-interpreted; that is, some of the multimodality of these distributions is surely
artifact rather than signal.

The correct interpretation of such density functions is that they indicate projection
consensus within the ensemble of projections considered. Although there may be an
inclination to use the density functions to guide statements on “climate change probability,”
such application should be avoided. The reason is that key climate change uncertainties are
not represented within the spectrum of currently available climate projections. To illustrate,
consider that for this case study a 75-member projection ensemble served as the basis for
fitting density functions, representing information from a heterogenous mix of 17 coupled
ocean—atmosphere climate models under two emissions pathways, reflecting various states
of modeling capability and a crude cross section of the uncertainties concerning future
emissions. Not represented among these projections are the uncertainties associated with
the many factors not included in current climate models or in the pathways considered here
(e.g., assumed global technological development, distributed energy-technology portfolios,
resultant spatial distribution of GHG sources and sinks through times, and biogeochemical
interaction with GHG sources and sinks, and many others). For these reasons, it is
important to interpret the “climate projection density” functions featured in this analysis as
being a characteristic of the ensemble considered and not the full range of uncertainties. In
the end, “climate projection densities” are expected to be distinctly different from climate-
change probabilities.

It also bears mentioning that the historical 20c3m climate simulations included in the
WCRP CMIP3 archive and used here are not strictly comparable, which introduces
uncertainty surrounding credibility analysis results and climate projection initial
conditions. Although the 20c3m simulations all shared the same primary anthropogenic
GHG forcings, the exact combinations of natural radiative forcings and some secondary
anthropogenic influences varied from modeling group to modeling group. This, along
with the issue of simulating low-frequency natural climate variations discussed earlier,
limits our ability to interpret relative model differences meant to be revealed by the
credibility analysis.

Other limitations stem from the absence of basic features that are generally required of
statistical frameworks, including: (1) requirement to account for the uncertainties of the
Reference climate definitions framing the model credibility analysis, (2) a preference for the
credibility analysis to be focused only on past simulation of the projected quantity, and
(3) requirement to account for the interdependence among credibility analysis variables and
metrics (i.e. “dimensions” in the distance-similarity framework). Attribute (1) limits the
results produced from the present analysis so that it does not fully represent yet another
aspect of the uncertainties associated with the projections, in this case, the uncertainty as to
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how well the models really do represent the real-world climate. It will be beneficial if future
work can be recast to factor in such uncertainties.

Attribute (2) points to a matter of philosophy in the analytical design herein: whether to
frame credibility analysis on a model’s ability to recreate only past simulation of projected
quantities or a mix of regionally relevant local and global climate variables influencing the
projected quantities, along with their teleconnections (including the projected quantity).
When weighing these options, a real-world limitation emerges in that the projected
quantities in question include many historical influences besides the GHG trends that
motivate development of GHG-based projections. The complex nature of the climate
system is also a factor, as projected quantities depend on the fate and evolution of many
other variables within the models. The analytical choice to focus only on past simulation of
the projected quantities is reasonable if it can be assumed that credibility in projecting a
given quantity is informed completely by understanding the model’s capability in
simulating past values of that quantity. However, in the case of regional climate projection,
there is recognition that models can produce “correct answers” for different climate
variables and specific regional locations for the “wrong reasons.” This fact, although
contradictive to the preceding philosophy, promotes consideration for a broader mix of
variables and metrics in the credibility analysis, on the idea that ability to recreate a mix of
regionally relevant variables and metrics during past simulation should be a good indicator
of a models ability to project an embedded quantity (or quantities) within that mix.

Considering the mix of regionally relevant climate variables and metrics used to define
model credibility, it is reasonable to assume that inter-variable and inter-metric correlations
exist, in defiance of consideration (3), because they are sampled from a common modeled
or observed climate system. Nevertheless, such variables and metrics are treated herein as
being independent dimensions when computing distance-based model-to-reference similarity.
Perhaps future work could focus on modifying the credibility analysis to be framed around a
more limited set or transformed set of regionally relevant variables and metrics that are
essentially uncorrelated, thereby avoiding the issue of inter-variable and inter-metric
correlations affecting interpretation of computed similarity distance.

Finally, focusing on greater numbers of variables and metrics tended to work against the
reasonable objective of using credibility analysis to reduce perceived projection uncertainty
by focusing on scenarios produced by a set of “best” models. Our results showed that the
cumulative differences between models became more muted as more variables and metrics
were considered. This particular case study was framed with a goal to identify a “more
credible half” of the available models upon which to focus attention (much like the
approach used by Milly et al. (2005) and to explore how such model selections affect
density function development and density-based scenario weights.

5 Summary and conclusions

A methodology has been developed for use in regional assessments, to evaluate the relative
credibility of models providing twenty-first century climate projections based on their relative
accuracies in simulating past climate conditions. The method rests on the philosophy that the
relative credibility of a given model’s climate projections among those of other models can be
inferred from the model’s performance in recreating twentieth century climatology compared
to other models. A distance-similarity approach was used to compare among models, where
modeled twentieth century climate differences were measured from reference observations of
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several regionally relevant climate variables and statistical metrics. Computed distances were
then translated into relative model weights, which were then used to select (and possibly
weight) among models when estimating climate projection densities.

Case study application of these methods for the Northern California region indicates that:

—  Credibility analysis based on multiple climate variables and metrics allows models to
be distinguished according to more comprehensive simulation performance. However,
use of a greater number of variables and metrics led to less apparent distance-based
differences among models.

—  Credibility analysis based on a more limited set of variables and metrics led to greater
apparent distance-based differences among models. However, the resultant model
weights and subsequently use of weights to filter models produced model-culling
decisions that depend greatly on the (somewhat arbitrary) choice of metrics.

— Using credibility analysis results to cull models and affect construction of climate
projection density functions led to some change in the local aspects of the density
functions. For functions describing projected temperature change, results showed that
the overall function spread and central tendency tended to be more influenced by how
inclusive and extensive the original ensemble was (i.e. Uncertainty Ensemble from
Table 1) compared to the influence of deciding whether to filter down to a “better half”
of models before fitting the functions. That is, the various culling of the projections
used to estimate the distributions did relatively little to change either the central
tendencies or ranges of the distributions obtained. For functions describing projected
precipitation change, results lead to similar impressions, except that the central
tendency of the projected precipitation anomalies’ were more sensitive to choice of
whether to consider model-culling, but not so much to choice of which cull basis to use
among the three “perspectives” considered (Table 3).

Revisiting the motivating question of whether relative scenario weights derived from
credibility-based density functions (as framed by these methods) were significantly
different than those derived from density functions that do not consider model culling,
our results suggest that:

— Accounting for model credibility through model-culling prior to fitting the density
function has some influence on the relative scenario weights, which could translate into
effects on the subsequent risk assessment.

—  Perhaps more significantly, the relative scenario weights are relatively more sensitive to
the choice of projected quantity (e.g., d(7), d(P), or d(7,P)) than to the chosen cull basis
(Table 3) prior to estimating the density function describing that quantity.
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